
eBPF & AI Powered EDRs
Can Red Teams Still Win?

11.Mar.2025
Red Team Summit 2025 Ansh // Google Offensive Security

Before we get started, let’s have a show of hands, how many of you have worked with 
or are familiar with the term eBPF / BPF?

Alright, let’s do a brief recap on eBPF, explore how it’s used in EDRs, lessons I 
learned creating my own system monitor, and how we as attackers may still be able to 
defeat the combination of eBPF and EDRs. 



Security Engineer @ Google’s Offensive Security Team

~# whoami

Ansh
mrdebator@

I swim, play tennis, & dig into kernels

Hey everyone, my name is Ansh. I’m a Security Engineer in Google’s Offensive 
Security team. When I’m not exploring low level system intricacies, I like to cook and 
play a few sports. 



eBPF & EDRs 01

Let’s talk about our “frenemy”, Endpoint Detection & Response, we need it to keep us 
secure, but it’s also the very thing that makes our jobs harder. And now, eBPF is 
giving EDR solutions more visibility into our actions than ever before. 



Control + Filter Network Traffic

1993 - BPF

BPF went Super Saiyan

2014 - eBPF
Networking + Security + Observability

In 1993, the Linux kernel added the Berkeley Packet Filter to help filter and control 
network traffic. About 30 years since, BPF effectively went Super Saiyan and added 
so many features that we now call it the “extended” Berkeley Packet Filter. These 
newer features can be used for networking, security, monitoring, and a lot more. 
Let’s take a look…



eBPF
● Instruction set & execution environment inside the Linux kernel

● Provides a “virtual machine” to alter the execution of the kernel without having to recompile the kernel

user space

kernel space

source_code.c Compilation to eBPF byte 
code

object_file.o is loaded into 
the kernel using the bpf 

syscall

Execution Just-In-Time compilation eBPF Verifier

1. eBPF allows you to run sandboxed programs within the Linux kernel without 
modifying kernel source code or loading kernel modules. This capability opens 
the door the extremely powerful and efficient system observation. 

2. It provides various hooks that allow you to trace events. Think about it like a 
programmable network of sensors and filters inside the kernel – now whatever 
program you write, takes advantage of these preexisting hooks, and you can 
set telemetry and actions based on chosen events. 

3. An eBPF program starts out as a “restricted” C program. Compared to a 
regular C program, things like stack size, instruction count, loops, and 
available functions are limited to protect the operations of the kernel.

4. Once compiled into bytecode and loaded into the kernel, the program is 
verified by running a Depth-First Search to parse program instructions into a 
Directed Acyclic Graph. This primarily ensures that program termination must 
be guaranteed by the program, so no backwards jumps, unbounded loops, or 
unreachable functions. 

5. Then, we wait, the kernel’s JIT compiler will execute the program when the 
relevant event type is triggered. 

The benefit of not having to load a kernel module and a dedicated verifying 
vetting your program, is that in the worst case scenario, the eBPF probe just 
doesn’t load, it doesn’t take down kernel operations.



github.com/eunomia-bpf/bpf-developer-tutorial

Here’s an example of a simple eBPF program used to monitor and capture the 
“unlink” system call executed in the Linux kernel. The unlink system call is used to 
delete a file. The program traces the system call by placing hooks at the entry and exit 
points of the “do_unlinkat” function. 

There are two operations this program performs with two distinct probes

The kProbe is triggered when the function is entered. It takes two parameters: dfd (file 
descriptor) and name (filename structure pointer). We retrieve the PID of the current 
process and then read the filename. Finally, we use the bpf_printk function to print the 
PID and the filename in the kernel log.

The kRetProbe is triggered when exiting the function. Its purpose is to capture the 
return value of the function. Once again, we capture the PID and print the PID and 
return value into the kernel log. 

http://github.com/eunomia-bpf/bpf-developer-tutorial


Break into almost any kernel 
function.
Use: syscall monitoring, 
process tracking

Process packets early in the 
network stack at very high 
speeds.
Use: network filtering, DDoS 
mitigation

kProbes Tracepoints
Statically defined markers 
placed by developers.
Use: syscall tracing, kernel 
events

Socket Filters & XDP

eBPF + EDR

LSM Hooks + KRSI
Implement fine-grained access 
control and security policy 
enforcement. 
Use: process isolation, 
mandatory access control

In the previous slide, we looked at a program that could hook onto kernel functions. 
This was done using a probe type called kProbe. 
eBPF provides us with a couple of different kinds of probes. The most commonly used 
probes for EDRs are the following:

● kProbes help tap into almost any kernel function, on entry, or on return. 
They’re useful for syscall monitoring and process tracking.

● Tracepoints are part of the kernel’s stable API and are defined markers placed 
there by the developers. They’re used to trace syscalls, kernel events, and 
scheduler events. 

● Socket Filters and XDP are both network probes that allow network filtering 
and DDoS mitigation. Use these with caution as you’ll be dealing with packets 
very early in the network stack. 

● LSM + KRSI: Traditional LSMs allow admins to enforce mandatory access 
control policies by executing a security module when a LSM hook is triggered. 
The Kernel Runtime Security Instrumentation project, created by Google, 
essentially uses hooks provided by LSMs with the flexibility and safeguards of 
eBPF. Google’s KRSI provides a more granular and adaptable approach 
compared to traditional LSMs. The key is that it’s built on top of the LSM 
framework, giving it the power to enforce policies, not just observe.

These probes allow defenders to receive an extraordinary amount of telemetry 
with minimal latency and overhead. 



Sysmonitor-ebpf Architecture

github.com/mrdebator/sysmonitor-ebpf

So about 6 months before I completed my undergraduate degree, I set out to better 
understand what eBPF can really do and how EDRs use it, by writing a systems 
monitor to aggregate telemetry in cloud native environments from within the kernel.
The tool, sysmonitor-ebpf is publicly available if you want to check it out. 
My professor and I used tracepoints to isolate the individual containers in the 
environments by their namespaces and trace the system calls that occur in each 
container.

Generally, this is an effective alternative to container monitoring solutions that use a 
conventional sidecar architecture and is used by commercial providers like Falco, 
Cilium, and Solo.io

http://github.com/mrdebator/sysmonitor-ebpf


Can we identify & categorize behavioral drift?

Now that we have unparalleled telemetry, a question we posed to ourselves was, can 
we use this to identify and categorize behavioral drift?



Data Collection Architecture

Malware Detection in Cloud Native Environments, Mitchell BS, Chandnani A, et al

Let’s get some data to try and answer this question.

The objective was to gather clean baseline logs for benign and malicious behavior, 
i.e. regular usage vs active exploitation of the vulnerabilities. This was the architecture 
we used. 

The host underlying our Kubernetes cluster was loaded with our system monitor and 
user behavior was emulated using automation scripts and a load tester called Locust. 



Data Collection Architecture

Attack Strategy, Wordpress CVE-2016-10033

Attack Strategy, Redis CVE-2022-0543

Using the aforementioned architecture, I created two controlled testing environments 
weakened with known Remote Code Execution (RCE) vulnerabilities in Redis and 
Wordpress.



eBPF + EDR + AI

Case Study 
Configuration

Total Events Total Syscalls Classifier Results

Vulnerable Patched Vulnerable Patched AUC F1 Score Accuracy

Redis Exploit 24,801 8,979 12,277,890 2,050,209 1.0 1.0 1.0

Redis Hybrid 24,744 9,516 7,575,207 1,710,114 1.0 1.0 1.0

WP Exploit 11,134 8,316 4,858,726 3,414,846 1.0 0.98 0.98

WP Hybrid 11,022 8,296 5,116,830 3,772,503 1.0 1.0 1.0

The “exploit” tests you see on each system involved all emulated users attempting to 
execute attacks on both the vulnerable and patched versions of the instances. 

The “hybrid” test involved the emulated users conducting a blend of randomized 
benign and malicious behavior against both systems. 

We trained a voting ensemble classifier that yielded extremely positive results for our 
Proof-of-Concept

Eight datasets were collected in total. Two datasets were collected for each row – one 
captured when the vulnerable version was deployed, and one for the patched 
software. The classifier results were averaged over three separate runs. 



Limitations 02

But while eBPF may seem like a silver bullet for monitoring and threat detection, there 
are some inherent limitations. Remember, eBPF was never built for security. 



Limited buffer space 
(512 bytes) can 
obscure data needed 
for threat detection.

Race conditions when 
loading multiple eBPF 
programs 
simultaneously.

Data Truncation Instruction Limits
Programs are limited to 
4,096 instructions and an 
effective execution limit 
of 1 million instructions.

eBPF runs with page 
faults disabled -- if 
memory is paged out, 
it can’t be accessed. 

Event Overload Page Faults

eBPF has some key limitations that impact developers and may benefit attackers 
alike. I encountered all these limitations while building and testing my tool:

● Data Truncation: eBPF’s stack space is limited to 512 bytes. When writing 
code, be mindful of how much scratch data you use and the depth of your call 
stacks. For instance, 512 bytes is less than the longest permitted file path 
length of 4,096 bytes.

● Instruction Limits: An eBPF program can only have 4,096 instructions, and 
reusing code (by defining a function) isn’t possible. Until recently, loops 
weren’t supported. Now they are, with some guardrails. 

○ This prevents arbitrary long monitoring programs from bring 
written. 

● Event Overload: Because eBPF lacks concurrency primitives and a probe 
can’t block the event producer, an attach point can be easily overwhelmed 
with events. This can lead to:

○ Missed events (kernel stops calling the probe)
○ Data loss (due to lack of storage)
○ Data loss (due to complete overwriting of older data)

■ A notable encounter with this issue was while processing 
streams of system calls to log various behaviors on Cloud 
Native systems, I ended up needed a ring buffer of size 81,920 
bytes in user space to handle the sheer number of events 
coming my way. 

○ Data corruption (from partial overwrites or complex data formats)



● Page Faults: For various reasons eBPF runs with page faults disabled, this 
becomes bad news for security monitoring tools if relevant details are paged 
out. 



Detecting the 
Detector 03

Now that we have a better understanding of eBPF, let’s look at footprinting what kinds 
of eBPF detections may be running on a system.



What functions are being monitored?
What data are they collecting?

When footprinting eBPF detectors, ask yourself: 
● What functions would be monitored?

○ execve for process creation
○ openat for file access
○ socket for network connections
○ ptrace for process tracing

● What data are they collecting? 
○ How is this data being communicated?
○ Can we examine the eBPF maps used to communicate between kernel 

and user space?



Using bpftool

bpftool prog list Shows currently loaded eBPF programs, IDs, & probe type

bpftool map Lists eBPF maps used for kernel-user space communication

bpftool prog show <id> xlated View eBPF bytecode before JIT compilation

Bpftool is the primary command utility for all things eBPF. 
Contingent on the nuances of your code execution, here are three 
commands you can use to better understand what you’re up 
against.

1. First, try listing the loaded eBPF programs, this will also shed 
some light on what probe types are being used

2. Check out the various eBPF maps currently in use. BPF Maps 
are used to communicate between kernel and userspace 
components of monitoring softwares. This should tell us 
what kind of telemetry is being tracked. 

3. Finally, we can also retrieve the bytecode of the program and 
attempt to reverse it at our convenience. 

bpftool prog unload <id>



Using ls

/sys/kernel/debug/tracing/events Directory holds information about available tracepoints

...tracing/events/syscalls/sys_enter* See potential syscall attach points

/sys/kernel/debug/tracing/kprobes Reveal registered kProbes

A safer, yet more manual method is to simply use the `ls` 
command.
The /sys/kernel/debug directory and its subdirectories hold 
information registered probes

For example, listing the first directory reveals information about 
available tracepoints
You can take this a step further and try to list potential attach 
points for system calls as well 

Similarly, we can list out kProbes, uProbes, and more. 



Bypasses 04

We’ve found our foothold into the world of eBPF EDRs, let’s take it further. 



Beat Rules, Not Telemetry

Rule: Only sshd, ps, & pam-config can read /etc/shadow

Bypass: cp /bin/cat ~/ps ; sudo ps /etc/shadow

Ultimately, our battle is with what agents do with gathered telemetry, not from 
gathering telemetry in the first place. 
Your telemetry can be top notch, but if enforced with ambiguous rules, we can 
craft a bypass nonetheless. 

Let’s take a look at a rule from Falco’s example ruleset that allows only some 
binaries to read /etc/shadow



Beat Rules, Not Telemetry

However, the way this rule is implemented only mentions the names of the 
binaries, not the full path or any kind of signature.



Reflective Loading

Understand scope of telemetry Can we operate outside it?

Example: Create a userland “exec” to avoid telemetry based on the execve syscall.

Reference: The Design and Implementation of Userland Exec by grugq

A common Over-the-Shelf approach is reflective loading. 
When tackling eBPF instrumentation, it’s crucial to understand what telemetry is 
gathered. Understanding the extent of eBPFs telemetry will, in the most literal sense, 
help us think outside the box
For instance, if the execve syscall is being monitored, it’s possible to create a 
userland version of the system call to create new processes that the eBPF program 
won’t have visibility into. 
There are plenty of areas that can’t be reasonable instrumented with BPF due to 
performance reasons. There could be areas where excessive probing could lead to a 
performance overhead pushing development team to ignore them. Carefully auditing 
the eBPF program is paramount. 

https://grugq.github.io/docs/ul_exec.txt


Memory Consumption

● Can you push the filter to retrieve something larger than 512 bytes?

○ What if the script tries dumping syscall arguments or `pt-regs`?

● eBPF programs will drop events if they cannot be consumed fast 

enough

● Workarounds? Using multiple probes or splitting code into multiple 

programs could lead to TOCTOU issues

If you can’t avoid noise, be extra noisy
● eBPF programs have limited stack space, which can cause data truncation.

○ Remember, eBPF will drop events if they can’t be consumed fast 
enough, instead of dragging down the performance of the entire 
system with it. 

● Even when workarounds are used, such as 
○ multiple probes to trace the same events but capture different data
○ Splitting the code into multiple programs that call each other using a 

program map
● There’s still room to abuse its native behavior, not to mention all the potential 

TOCTOU issues that may arise. 



Verifier Vulnerabilities

CVE-2023-2163
Leveraged incorrect verifier 
pruning resulted in arbitrary 
read/write in kernel memory.

CVE-2021-31440
Low privilege program 
bypassed verification resulting 
in an Out-of-Bounds (OOB) 
access, leading to a container 
escape. 

CVE-2020-8835
Used Out-of-Bounds (OOB) 
access to change the uid in the 
cred structure to 0, achieving 
privilege escalation!

Finally, we have verifier vulnerabilities. Bugs in the very system that’s meant to 
guardrail eBPF programs. Here’s three notable examples:

1. Incorrect verifier pruning in BPF led to unsafe code paths being incorrectly 
marked as safe, resulting in arbitrary read/write in kernel memory, lateral 
privilege escalation, and container escapes

2. OOB access may lead to container escapes and the ability to modify key 
structures, such as the cred structure to change your uid and elevate 
privileges



Thank you!
Acknowledgements

● Brian Mitchell
● Ash Fox
● Niru Ragupathy
● Shea Polansky
● Peter Moody



References
1. eBPF: A new frontier for malware - Red Canary, 

https://redcanary.com/blog/threat-detection/ebpf-malware/ 
2. Malware Detection in Cloud Native Environments, 

https://www.cs.drexel.edu/~bmitchell/pubs/AICCC_2024_Malware_Final.pdf
3. Pitfalls of relying on eBPF for security monitoring (and some solutions) | Trail of Bits Blog,  

https://blog.trailofbits.com/2023/09/25/pitfalls-of-relying-on-ebpf-for-security-monitoring-an
d-some-solutions/

4. Why Traditional EDRs Fail at Server D&R in the Cloud - Sysdig, 
https://sysdig.com/blog/traditional-edr-solutions-cloud/

5. On Bypassing eBPF Security Monitoring - Doyensec's Blog, 
https://blog.doyensec.com/2022/10/11/ebpf-bypass-security-monitoring.html

6. What is eBPF? The Hacker’s New Power Tool for Linux, 
https://cymulate.com/blog/ebpf_hacking/

7. Warping reality using eBPF, https://blog.tofile.dev/2021/08/01/bad-bpf.html 

https://redcanary.com/blog/threat-detection/ebpf-malware/
https://www.cs.drexel.edu/~bmitchell/pubs/AICCC_2024_Malware_Final.pdf
https://blog.trailofbits.com/2023/09/25/pitfalls-of-relying-on-ebpf-for-security-monitoring-and-some-solutions/
https://blog.trailofbits.com/2023/09/25/pitfalls-of-relying-on-ebpf-for-security-monitoring-and-some-solutions/
https://sysdig.com/blog/traditional-edr-solutions-cloud/
https://blog.doyensec.com/2022/10/11/ebpf-bypass-security-monitoring.html
https://cymulate.com/blog/ebpf_hacking/
https://blog.tofile.dev/2021/08/01/bad-bpf.html


Bonus 05

Under these perceived dire circumstances, let’s look at how we can still sneak past



Exploit eBPF Helper Functions

●  `bpf_probe_write_user()` can write 
to the user-space memory of the 
current process.

● bad-bpf writes to user-space 
memory when `sudo` tries to read 
`/etc/sudoers`

- Bad user land configuration, we write to /etc/sudoers (this will give us 
system)

- Major ref: https://blog.tofile.dev/2021/08/01/bad-bpf.html
- new title: liar liar, sudo lights the system on fire?

- Example situation: compromised web server, with temp root access
- While a reverse webshell can be used as a reentry, the web server runs 

as the low priv user.
- This user is not on sudo list!

- This is where eBPF enters:
- Sudo is in the end a list, requires a open/read sys call. 
- We can use eBPF to hijack these calls!

https://github.com/pathtofile/bad-bpf
https://blog.tofile.dev/2021/08/01/bad-bpf.html


Stealth with eBPF

● Use eBPF to hide malicious process entries!

● Hook onto the `getdents64` syscall and use 
pointer manipulation to obfuscate process 
entries.

- Obsidian notes
- Timo’s GitHub repo
- Small ref: Guillaume Fournier Sylvain Afchain Sylvain Baubeau - eBPF, I 

thought we were friends.pdf
- Cool factor for hiding processes. 

- Ps, ls, crowdstrike (EDR) raw sys calls for listing processes, all 
use the same syscall getdents, we override the function and use 
pointer manipulation to obfuscate our process entry. 

- A -> B -> C; A -> sysdent + pointer -> C 
- Using an eBPF rootkit to `hide` processes

https://media.defcon.org/DEF%20CON%2029/DEF%20CON%2029%20presentations/Guillaume%20Fournier%20Sylvain%20Afchain%20Sylvain%20Baubeau%20-%20eBPF%2C%20I%20thought%20we%20were%20friends.pdf
https://media.defcon.org/DEF%20CON%2029/DEF%20CON%2029%20presentations/Guillaume%20Fournier%20Sylvain%20Afchain%20Sylvain%20Baubeau%20-%20eBPF%2C%20I%20thought%20we%20were%20friends.pdf


Allows the program to 
override return values. 
ebpfkit uses this to block 
actions that could lead to its 
discovery.

bpf_override_return

Even more attacks!

eBPF-Considered-Harmful
A PoC eBPF backdoor that 
allows attackers to connect via 
port 1337. 
github.com/bluec0re/ebpf-cons
idered-harmful

And there’s more, 
●
●

https://github.com/Gui774ume/ebpfkit
http://github.com/bluec0re/ebpf-considered-harmful
http://github.com/bluec0re/ebpf-considered-harmful

